MOPS: Multivariate orthogonal polynomials (symbolically)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MOPS: Multivariate orthogonal polynomials (symbolically)

In this paper we present a Maple library (MOPs) for computing Jack, Hermite, Laguerre, and Jacobi multivariate polynomials, as well as eigenvalue statistics for the Hermite, Laguerre, and Jacobi ensembles of Random Matrix theory. We also compute multivariate hypergeometric functions, and offer both symbolic and numerical evaluations for all these quantities. We prove that all algorithms are wel...

متن کامل

Multivariate Orthogonal Polynomials and Operator Theory

The multivariate orthogonal polynomials are related to a family of commuting selfadjoint operators. The spectral theorem for these operators is used to prove that a polynomial sequence satisfying a vector-matrix form of the three-term relation is orthonormal with a determinate measure.

متن کامل

Multivariate Orthogonal Laurent Polynomials and Integrable Systems

An ordering for Laurent polynomials in the algebraic torus (C∗)D, inspired by the Cantero–Moral– Velázquez approach to orthogonal Laurent polynomials in the unit circle, leads to the construction of a moment matrix for a given Borel measure in the unit torus T. The Gauss–Borel factorization of this moment matrix allows for the construction of multivariate biorthogonal Laurent polynomials in the...

متن کامل

Multivariate Orthogonal Polynomials and Modified Moment Functionals

Multivariate orthogonal polynomials can be introduced by using a moment functional defined on the linear space of polynomials in several variables with real coefficients. We study the so-called Uvarov and Christoffel modifications obtained by adding to the moment functional a finite set of mass points, or by multiplying it times a polynomial of total degree 2, respectively. Orthogonal polynomia...

متن کامل

Unbounded Commuting Operators and Multivariate Orthogonal Polynomials

The multivariate orthogonal polynomials are related to a family of operators whose matrix representations are block Jacobi matrices. A sufficient condition is given so that these operators, in general unbounded, are commuting and selfadjoint. The spectral theorem for these operators is used to establish the existence of the measure of orthogonality in Favard's theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 2007

ISSN: 0747-7171

DOI: 10.1016/j.jsc.2007.01.005